Note on completeness and its consequences for Week 9

Definition 1. If $X \subseteq \mathbb{R}$ then X is said to be bounded if there is some $b \in \mathbb{R}$ such that $x \leq b$ for all $x \in X$. The real number b is said to be an upper bound for X.

Additional exercise 1. If a set $X \subseteq \mathbb{R}$ is bounded then there are infinitely many upper bounds for X.
Definition 2. If $X \subseteq \mathbb{R}$ and $b \in \mathbb{R}$ then b is said to be the supremum of X if
(1) b is an upper bound for X
(2) if $\bar{b}<b$ then \bar{b} is not an upper bound for X.

Additional exercise 2. A set $X \subseteq \mathbb{R}$ has at most one supremum.
Theorem 1. Every non-empty, bounded set of reals has a supremum.
Proof. This will be proved for $X \subseteq[0,1]$ since the general case follows easily from this. Each $x \in X$ can be represented in decimal expansion as an infinite sequence $x=0 . x_{1} x_{2} x_{3} \ldots$ of the ten digits $0,1,2,3 \ldots, 8,9$. In other words, each x_{n} is an integer between 0 and 9 .

Let s_{1} be the largest of all the digits x_{1} where $x \in X$. Then let s_{2} be the largest of al the digits x_{2} where $x \in X$ and $x_{1}=s_{1}$. Proceeding by induction, let s_{n+1} be the largest of all the digits x_{n+1} where:

- $x \in X$
- $x_{1}=s_{1}$
- $x_{2}=s_{2}$
- $\quad \vdots$
- $x_{n}=s_{n}$

Then let s be the real number whose digits in decimal expansion are the s_{i}; in other words,

$$
s=0 . s_{1} s_{2} s_{3} s_{4} \ldots
$$

The first thing to show is that s is an upper bound for X; namely that if $x \in X$ then $x_{n} \leq s_{n}$ for each natural number n. So let $\bar{x} \in X$. It will be shown by induction that $\bar{x}_{n} \leq s_{n}$. If $n=1$ then s_{1} was defined to be the largest of all x_{1} where $x \in X$. Since $\bar{x} \in X$ it follows that $\bar{x}_{1} \leq s_{1}$. Now suppose that it has been shown that $\bar{x}_{n} \leq s_{n}$ for all $n \leq m$. Then s_{n+1} was defined to be the largest of all the digits x_{n+1} where:

- $x \in X$
- $x_{1}=s_{1}$
- $x_{2}=s_{2}$
- $\quad \vdots$
- $x_{n}=s_{n}$

In particular, \bar{x} satisfies all of the conditions and hence $\bar{x}_{n+1} \leq s_{n+1}$.
Finally it must be shown that if $s^{\prime}<s$ then s^{\prime} is not an upper bound for X. But if $s^{\prime}<s$ there must be some digit where s^{\prime} and s disagree. Let n be the least such digit; in other words,

- $s_{n}^{\prime} \neq s_{n}$
- $s_{1}^{\prime}=s_{1}$
- $s_{2}^{\prime}=s_{2}$
- $\quad \vdots$
- $s_{n-1}^{\prime}=s_{n-1}$

Moreover, since $s^{\prime}<s$ it must be the case that $s_{n}^{\prime}<s_{n}$. But by the definiton of s_{n} there must be some $x \in X$ such that

- $x_{1}=s_{1}$
- $x_{2}=s_{2}$
- :
- $x_{n-1}=s_{n-1}$
and $x_{n}=s_{n}$. But then the first digit where s^{\prime} and x disagree is the $n^{\text {th }}$ digit and $x_{n}>s_{n}^{\prime}$, meaning that $s^{\prime}<x$. This shows that s^{\prime} is not an upper bound for X.

Additional exercise 3. Finish the proof that bounded sets of reals have suprema; in other words, complete the proof for X that are not necessarily subsets of $[0,1]$.

Theorem 2 (Intermediate Value Theorem). If If f is a continuous function from $[a, b]$ to \mathbb{R} and $f(a)<v<f(b)$ then there is $x \in[a, b]$ such that $f(x)=v$.

Proof. Suppose that $f:[a, b] \rightarrow \mathbb{R}$ is continuous and $f(a)<v<f(b)$. Let X be the set of $y \in[a, b]$ such that $f(z) \leq v$ for all $z \in[a, y]$. Since $a \in X$ it follows that X is non-empty and bounded. Letting x be the supremum of X it suffices to show that $f(x)=A$. This will be proved by contradiction by considering two cases.

Consider first the case that $f(x)>v$. Let $\epsilon=f(x)-v>0$. The continuity of f at x yields $\delta>0$ such that $f(w)>v$ for all w such that $x-\delta<w<x+\delta$. In other words, the interval $(x-\delta, x+\delta)$ is disjoint from X and this implies that $x-\delta$ is an upper bound for X, contradicting that x is the supremum of X.

Consider next the case that $f(x)<v$. From the hypothesis that $f(a)<v<f(b)$ it follows that $x<b$. Let $\epsilon=v-f(x)>0$. The continuity of f at x yields $\delta>0$ such that $f(w)<v$ for all w such that $x-\delta<w<x+\delta$. This implies that $x+\delta \in X$ contradicting that x is an upper bound for X.

Since both cases lead to a contradiction, it follows that $f(x)=v$.

Theorem 3 (Extreme Value Theorem). If f is a continuous function from $[a, b]$ to \mathbb{R} then there is some B such that:

- $f(x) \leq B$ if $a \leq x \leq b$
- there is some $x \in[a, b]$ such that $f(x)=B$.

Proof. A very similar proof to the case of Intermediate Value Theorem works here. Suppose that $f:[a, b] \rightarrow \mathbb{R}$ is continuous. To see that f is bounded, let X be the set of all $y \in[a, b]$ such that there is some B such that $f(z)<B$ for all $z \in[a, y]$. It will be shown by contradiction that b is the supremum of X.

Suppose that $s<b$ and s is the supremum of X. By continuity, letting $\epsilon=1$, there is some $\delta>0$ such that $f(x)<f(s)+1$ for all x such that $s-\delta<x<s+\delta$. Let $x^{*} \in X$ be arbitrary such that $s-\delta<x^{*}<s$. This means that there must be some B be such that $f(z)<B$ for all $z \in\left[a, x^{*}\right]$. But then $f(z)<\max (B, f(s)+1)$ for all z such that $z<s+\delta$. This contradicts that s is an upper bound for X since every real in $(s, s+\delta)$ is also in X. Hence $s=b$.

Finally it must be shown that $b \in X$. This is the same as the earlier argument. By continuity, letting $\epsilon=1$, there is some $\delta>0$ such that $f(x)<f(b)+1$ for all x such that $s-\delta<x \leq b$. Let $x^{*} \in X$ be arbitrary such that $s-\delta<x^{*}<s$. This means that there must be some B be such that $f(z)<B$ for all $z \in\left[a, x^{*}\right]$. But then $f(z)<\max (B, f(b)+1)$ for all z such that $z \leq b$.

Now let B be the supremum of the range of f. (Why does this exist?) Then let Y be the set of $z \in[a, b]$ such that the supremum of the range of f on $[a, z]$ is less than $B R$ and let x be the supremum of Y. We now have to check that $f(x)=B$. If $f(x)<B$ then a contradiction is obtained just as in the proof of the Intermediate Value Theorem. In other words, it must be the case that $f(x)=B$.

Additional exercise 4. Define a function f to be strongly continuous if for all x in the domain of f there is $\delta>0$ such that if $|z-x|<\delta$ then $|f(z)-f(x)|=0$. Prove that if the domain of f is the interval $[a, b]$ and f is strongly continuous then f is constant.

Additional exercise 5. Define a function to be locally increasing if for each x in its domain there is $\delta>0$ such that the function is increasing on the interval $(x-\delta, x+\delta)$. Prove that if the domain of f is the interval $[a, b]$ and f is locally increasing then f is increasing.

Additional exercise 6. Define a function to be locally monotone if for each x in its domain there is $\delta>0$ such that the function is increasing on the interval $(x-\delta, x+\delta)$ or decreasing on the interval $(x-\delta, x+\delta)$. Prove that if the domain of f is the interval $[a, b]$ and f is locally monotone then f is monotone. Be careful, since this does not follow immediately from the previous exercise.

Additional exercise 7. Suppose that

- $X \subseteq(a, b)$
- b is the supremum of X
- $-a$ is the supremum of $-X$ where $-X$ is defined to be the set of all $-x$ where $x \in X$.

Prove that the supremum of the $X-X$ is $b-a$ where $X-X$ is defined to be the set of all $x-y$ where x and y beong to X.
Additional exercise 8. Suppose that $f:[0,1] \rightarrow \mathbb{R}$ is continuous and $f(0)=f(1)=0$. Suppose further that $f(a)>0$. Prove that there is some b such that:

- $1 \leq b<a$
- $f(b)=0$
- $f(x)>0$ for all x such that $b<x \leq a$.

Additional exercise 9. Suppose that $f:[0,1] \rightarrow \mathbb{R}$ is increasing (or even just non-decreasing) on $[0,1]$ and $0<a<1$. Prove that $\lim _{x \rightarrow a^{-}} f(x)$ exists.

