
Note on completeness and its consequences for Week 9

Definition 1. If X ⊆ R then X is said to be bounded if there is some b ∈ R such that x ≤ b for all
x ∈ X. The real number b is said to be an upper bound for X.

Additional exercise 1. If a set X ⊆ R is bounded then there are infinitely many upper bounds for X.

Definition 2. If X ⊆ R and b ∈ R then b is said to be the supremum of X if

(1) b is an upper bound for X
(2) if b̄ < b then b̄ is not an upper bound for X.

Additional exercise 2. A set X ⊆ R has at most one supremum.

Theorem 1. Every non-empty, bounded set of reals has a supremum.

Proof. This will be proved for X ⊆ [0, 1] since the general case follows easily from this. Each x ∈ X
can be represented in decimal expansion as an infinite sequence x = 0.x1x2x3 . . . of the ten digits
0, 1, 2, 3 . . . , 8, 9. In other words, each xn is an integer between 0 and 9.

Let s1 be the largest of all the digits x1 where x ∈ X. Then let s2 be the largest of al the digits x2
where x ∈ X and x1 = s1. Proceeding by induction, let sn+1 be the largest of all the digits xn+1 where:

• x ∈ X
• x1 = s1
• x2 = s2

• ...
• xn = sn

Then let s be the real number whose digits in decimal expansion are the si; in other words,

s = 0.s1s2s3s4 . . .

The first thing to show is that s is an upper bound for X; namely that if x ∈ X then xn ≤ sn for
each natural number n. So let x̄ ∈ X. It will be shown by induction that x̄n ≤ sn. If n = 1 then s1 was
defined to be the largest of all x1 where x ∈ X. Since x̄ ∈ X it follows that x̄1 ≤ s1. Now suppose that
it has been shown that x̄n ≤ sn for all n ≤ m. Then sn+1 was defined to be the largest of all the digits
xn+1 where:

• x ∈ X
• x1 = s1
• x2 = s2

• ...
• xn = sn

In particular, x̄ satisfies all of the conditions and hence x̄n+1 ≤ sn+1.
Finally it must be shown that if s′ < s then s′ is not an upper bound for X. But if s′ < s there must

be some digit where s′ and s disagree. Let n be the least such digit; in other words,

• s′n 6= sn
• s′1 = s1
• s′2 = s2

• ...
• s′n−1 = sn−1

Moreover, since s′ < s it must be the case that s′n < sn. But by the definiton of sn there must be some
x ∈ X such that

• x1 = s1
• x2 = s2
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• ...
• xn−1 = sn−1

and xn = sn. But then the first digit where s′ and x disagree is the nth digit and xn > s′n, meaning that
s′ < x. This shows that s′ is not an upper bound for X. �

Additional exercise 3. Finish the proof that bounded sets of reals have suprema; in other words,
complete the proof for X that are not necessarily subsets of [0, 1].

Theorem 2 (Intermediate Value Theorem). If If f is a continuous function from [a, b] to R and
f(a) < v < f(b) then there is x ∈ [a, b] such that f(x) = v.

Proof. Suppose that f : [a, b] → R is continuous and f(a) < v < f(b). Let X be the set of y ∈ [a, b]
such that f(z) ≤ v for all z ∈ [a, y]. Since a ∈ X it follows that X is non-empty and bounded. Letting
x be the supremum of X it suffices to show that f(x) = A. This will be proved by contradiction by
considering two cases.

Consider first the case that f(x) > v. Let ε = f(x) − v > 0. The continuity of f at x yields δ > 0
such that f(w) > v for all w such that x − δ < w < x + δ. In other words, the interval (x − δ, x + δ)
is disjoint from X and this implies that x − δ is an upper bound for X, contradicting that x is the
supremum of X.

Consider next the case that f(x) < v. From the hypothesis that f(a) < v < f(b) it follows that
x < b. Let ε = v − f(x) > 0. The continuity of f at x yields δ > 0 such that f(w) < v for all w such
that x− δ < w < x+ δ. This implies that x+ δ ∈ X contradicting that x is an upper bound for X.

Since both cases lead to a contradiction, it follows that f(x) = v.
�

Theorem 3 (Extreme Value Theorem). If f is a continuous function from [a, b] to R then there is
some B such that:

• f(x) ≤ B if a ≤ x ≤ b
• there is some x ∈ [a, b] such that f(x) = B.

Proof. A very similar proof to the case of Intermediate Value Theorem works here. Suppose that
f : [a, b]→ R is continuous. To see that f is bounded, let X be the set of all y ∈ [a, b] such that there is
some B such that f(z) < B for all z ∈ [a, y]. It will be shown by contradiction that b is the supremum
of X.

Suppose that s < b and s is the supremum of X. By continuity, letting ε = 1, there is some δ > 0
such that f(x) < f(s) + 1 for all x such that s − δ < x < s + δ. Let x∗ ∈ X be arbitrary such that
s− δ < x∗ < s. This means that there must be some B be such that f(z) < B for all z ∈ [a, x∗]. But
then f(z) < max(B, f(s) + 1) for all z such that z < s+ δ. This contradicts that s is an upper bound
for X since every real in (s, s+ δ) is also in X. Hence s = b.

Finally it must be shown that b ∈ X. This is the same as the earlier argument. By continuity, letting
ε = 1, there is some δ > 0 such that f(x) < f(b) + 1 for all x such that s− δ < x ≤ b. Let x∗ ∈ X be
arbitrary such that s− δ < x∗ < s. This means that there must be some B be such that f(z) < B for
all z ∈ [a, x∗]. But then f(z) < max(B, f(b) + 1) for all z such that z ≤ b.

Now let B be the supremum of the range of f . (Why does this exist?) Then let Y be the set of
z ∈ [a, b] such that the supremum of the range of f on [a, z] is less than BR and let x be the supremum
of Y . We now have to check that f(x) = B. If f(x) < B then a contradiction is obtained just as in the
proof of the Intermediate Value Theorem. In other words, it must be the case that f(x) = B. �

Additional exercise 4. Define a function f to be strongly continuous if for all x in the domain of f
there is δ > 0 such that if |z − x| < δ then |f(z) − f(x)| = 0. Prove that if the domain of f is the
interval [a, b] and f is strongly continuous then f is constant.



Additional exercise 5. Define a function to be locally increasing if for each x in its domain there is
δ > 0 such that the function is increasing on the interval (x− δ, x + δ). Prove that if the domain of f
is the interval [a, b] and f is locally increasing then f is increasing.

Additional exercise 6. Define a function to be locally monotone if for each x in its domain there is
δ > 0 such that the function is increasing on the interval (x − δ, x + δ) or decreasing on the interval
(x − δ, x + δ). Prove that if the domain of f is the interval [a, b] and f is locally monotone then f is
monotone. Be careful, since this does not follow immediately from the previous exercise.

Additional exercise 7. Suppose that

• X ⊆ (a, b)
• b is the supremum of X
• −a is the supremum of −X where −X is defined to be the set of all −x where x ∈ X.

Prove that the supremum of the X −X is b− a where X −X is defined to be the set of all x− y where
x and y beong to X.

Additional exercise 8. Suppose that f : [0, 1] → R is continuous and f(0) = f(1) = 0. Suppose
further that f(a) > 0. Prove that there is some b such that:

• 1 ≤ b < a
• f(b) = 0
• f(x) > 0 for all x such that b < x ≤ a.

Additional exercise 9. Suppose that f : [0, 1] → R is increasing (or even just non-decreasing) on
[0, 1] and 0 < a < 1. Prove that limx→a− f(x) exists.


