Definition 1. If $X \subseteq \mathbb{R}$ then X is said to be bounded if there is some $b \in \mathbb{R}$ such that $x \leq b$ for all $x \in X$. The real number b is said to be an upper bound for X.

Additional exercise 1. If a set $X \subseteq \mathbb{R}$ is bounded then there are infinitely many upper bounds for X.

Definition 2. If $X \subseteq \mathbb{R}$ and $b \in \mathbb{R}$ then b is said to be the supremum of X if

- (1) b is an upper bound for X
- (2) if b < b then b is not an upper bound for X.

Additional exercise 2. A set $X \subseteq \mathbb{R}$ has at most one supremum.

Theorem 1. Every non-empty, bounded set of reals has a supremum.

Proof. This will be proved for $X \subseteq [0,1]$ since the general case follows easily from this. Each $x \in X$ can be represented in decimal expansion as an infinite sequence $x = 0.x_1x_2x_3...$ of the ten digits $0, 1, 2, 3, \ldots, 8, 9$. In other words, each x_n is an integer between 0 and 9.

Let s_1 be the largest of all the digits x_1 where $x \in X$. Then let s_2 be the largest of all the digits x_2 where $x \in X$ and $x_1 = s_1$. Proceeding by induction, let s_{n+1} be the largest of all the digits x_{n+1} where:

- $x \in X$
- $x_1 = s_1$
- $x_2 = s_2$
- •
- $x_n = s_n$

Then let s be the real number whose digits in decimal expansion are the s_i ; in other words,

 $s = 0.s_1 s_2 s_3 s_4 \dots$

The first thing to show is that s is an upper bound for X; namely that if $x \in X$ then $x_n \leq s_n$ for each natural number n. So let $\bar{x} \in X$. It will be shown by induction that $\bar{x}_n \leq s_n$. If n = 1 then s_1 was defined to be the largest of all x_1 where $x \in X$. Since $\bar{x} \in X$ it follows that $\bar{x}_1 \leq s_1$. Now suppose that it has been shown that $\bar{x}_n \leq s_n$ for all $n \leq m$. Then s_{n+1} was defined to be the largest of all the digits x_{n+1} where:

- $x \in X$
- $x_1 = s_1$
- $x_2 = s_2$
- •
- $x_n = s_n$

In particular, \bar{x} satisfies all of the conditions and hence $\bar{x}_{n+1} \leq s_{n+1}$.

Finally it must be shown that if s' < s then s' is not an upper bound for X. But if s' < s there must be some digit where s' and s disagree. Let n be the least such digit; in other words,

- $s'_n \neq s_n$ $s'_1 = s_1$ $s'_2 = s_2$
- :
- $s'_{n-1} = s_{n-1}$

Moreover, since s' < s it must be the case that $s'_n < s_n$. But by the definiton of s_n there must be some $x \in X$ such that

- $x_1 = s_1$
- $x_2 = s_2$

- •
- $x_{n-1} = s_{n-1}$

and $x_n = s_n$. But then the first digit where s' and x disagree is the nth digit and $x_n > s'_n$, meaning that s' < x. This shows that s' is not an upper bound for X.

Additional exercise 3. Finish the proof that bounded sets of reals have suprema; in other words, complete the proof for X that are not necessarily subsets of [0, 1].

Theorem 2 (Intermediate Value Theorem). If If f is a continuous function from [a, b] to \mathbb{R} and f(a) < v < f(b) then there is $x \in [a, b]$ such that f(x) = v.

Proof. Suppose that $f : [a, b] \to \mathbb{R}$ is continuous and f(a) < v < f(b). Let X be the set of $y \in [a, b]$ such that $f(z) \leq v$ for all $z \in [a, y]$. Since $a \in X$ it follows that X is non-empty and bounded. Letting x be the supremum of X it suffices to show that f(x) = A. This will be proved by contradiction by considering two cases.

Consider first the case that f(x) > v. Let $\epsilon = f(x) - v > 0$. The continuity of f at x yields $\delta > 0$ such that f(w) > v for all w such that $x - \delta < w < x + \delta$. In other words, the interval $(x - \delta, x + \delta)$ is disjoint from X and this implies that $x - \delta$ is an upper bound for X, contradicting that x is the supremum of X.

Consider next the case that f(x) < v. From the hypothesis that f(a) < v < f(b) it follows that x < b. Let $\epsilon = v - f(x) > 0$. The continuity of f at x yields $\delta > 0$ such that f(w) < v for all w such that $x - \delta < w < x + \delta$. This implies that $x + \delta \in X$ contradicting that x is an upper bound for X.

Since both cases lead to a contradiction, it follows that f(x) = v.

Theorem 3 (Extreme Value Theorem). If f is a continuous function from [a, b] to \mathbb{R} then there is some B such that:

- $f(x) \leq B$ if $a \leq x \leq b$
- there is some $x \in [a, b]$ such that f(x) = B.

Proof. A very similar proof to the case of Intermediate Value Theorem works here. Suppose that $f : [a, b] \to \mathbb{R}$ is continuous. To see that f is bounded, let X be the set of all $y \in [a, b]$ such that there is some B such that f(z) < B for all $z \in [a, y]$. It will be shown by contradiction that b is the supremum of X.

Suppose that s < b and s is the supremum of X. By continuity, letting $\epsilon = 1$, there is some $\delta > 0$ such that f(x) < f(s) + 1 for all x such that $s - \delta < x < s + \delta$. Let $x^* \in X$ be arbitrary such that $s - \delta < x^* < s$. This means that there must be some B be such that f(z) < B for all $z \in [a, x^*]$. But then $f(z) < \max(B, f(s) + 1)$ for all z such that $z < s + \delta$. This contradicts that s is an upper bound for X since every real in $(s, s + \delta)$ is also in X. Hence s = b.

Finally it must be shown that $b \in X$. This is the same as the earlier argument. By continuity, letting $\epsilon = 1$, there is some $\delta > 0$ such that f(x) < f(b) + 1 for all x such that $s - \delta < x \le b$. Let $x^* \in X$ be arbitrary such that $s - \delta < x^* < s$. This means that there must be some B be such that f(z) < B for all $z \in [a, x^*]$. But then $f(z) < \max(B, f(b) + 1)$ for all z such that $z \le b$.

Now let B be the supremum of the range of f. (Why does this exist?) Then let Y be the set of $z \in [a, b]$ such that the supremum of the range of f on [a, z] is less than BR and let x be the supremum of Y. We now have to check that f(x) = B. If f(x) < B then a contradiction is obtained just as in the proof of the Intermediate Value Theorem. In other words, it must be the case that f(x) = B. \Box

Additional exercise 4. Define a function f to be strongly continuous if for all x in the domain of f there is $\delta > 0$ such that if $|z - x| < \delta$ then |f(z) - f(x)| = 0. Prove that if the domain of f is the interval [a, b] and f is strongly continuous then f is constant.

Additional exercise 5. Define a function to be locally increasing if for each x in its domain there is $\delta > 0$ such that the function is increasing on the interval $(x - \delta, x + \delta)$. Prove that if the domain of f is the interval [a, b] and f is locally increasing then f is increasing.

Additional exercise 6. Define a function to be locally monotone if for each x in its domain there is $\delta > 0$ such that the function is increasing on the interval $(x - \delta, x + \delta)$ or decreasing on the interval $(x - \delta, x + \delta)$. Prove that if the domain of f is the interval [a, b] and f is locally monotone then f is monotone. Be careful, since this does not follow immediately from the previous exercise.

Additional exercise 7. Suppose that

- $X \subseteq (a, b)$
- b is the supremum of X
- -a is the supremum of -X where -X is defined to be the set of all -x where $x \in X$.

Prove that the supremum of the X - X is b - a where X - X is defined to be the set of all x - y where x and y being to X.

Additional exercise 8. Suppose that $f : [0,1] \to \mathbb{R}$ is continuous and f(0) = f(1) = 0. Suppose further that f(a) > 0. Prove that there is some b such that:

- $1 \le b < a$
- f(b) = 0
- f(x) > 0 for all x such that $b < x \le a$.

Additional exercise 9. Suppose that $f : [0,1] \to \mathbb{R}$ is increasing (or even just non-decreasing) on [0,1] and 0 < a < 1. Prove that $\lim_{x\to a^-} f(x)$ exists.